Conformational dynamics of complement protease C1r inhibitor proteins from Lyme disease- and relapsing fever-causing spirochetes.

Sourav Roy, Charles E. Booth Jr., Alexandra D. Powell-Pierce, Anna M. Schlulz, Jon T. Skare, Brandon L. Garcia

https://www.jbc.org/article/S0021-9258(23)02000-8/fulltext

Minimal role for the alternative pathway in complement activation by HIT immune complexes.

Barnes AP, Khandelwal S, Sartoretto S, Myoung S, Francis SJ, Lee GM, Rauova L, Cines DB, Skare JT, Booth CE Jr, Garcia BL, Arepally GM., J Thromb Haemost., 2022

https://pubmed.ncbi.nlm.nih.gov/35996342/

Borrelia miyamotoi FbpA and FbpB Are Immunomodulatory Outer Surface Lipoproteins With Distinct Structures and Functions.

Booth CE Jr, Powell-Pierce AD, Skare JT, Garcia BL., Front Immunol., 2022

https://pubmed.ncbi.nlm.nih.gov/35693799/

A Structural Basis for Inhibition of the Complement Initiator Protease C1r by Lyme Disease Spirochetes.

Garrigues RJ, Powell-Pierce AD, Hammel M, Skare JT, Garcia BL., J Immunol., 2021

https://pubmed.ncbi.nlm.nih.gov/34759015/

Complement Evasion by Lyme Disease Spirochetes.

Skare JT, Garcia BL., Trends Microbiol., 2021

https://pubmed.ncbi.nlm.nih.gov/32482556/

The intergenic small non-coding RNA ittA is required for optimal infectivity and tissue tropism in Borrelia burgdorferi.

Medina-Pérez DN, Wager B, Troy E, Gao L, Norris SJ, Lin T, Hu L, Hyde JA, Lybecker M, Skare JT., PLoS Pathog., 2020

https://pubmed.ncbi.nlm.nih.gov/32365143/

Genome-wide screen identifies novel genes required for Borrelia burgdorferi survival in its Ixodes tick vector.

Phelan JP, Kern A, Ramsey ME, Lundt ME, Sharma B, Lin T, Gao L, Norris SJ, Hyde JA, Skare JT, Hu LT., PLoS Pathog., 2019

https://pubmed.ncbi.nlm.nih.gov/31086414/

Structural determination of the complement inhibitory domain of Borrelia burgdorferi BBK32 provides insight into classical pathway complement evasion by Lyme disease spirochetes.

Xie J, Zhi H, Garrigues RJ, Keightley A, Garcia BL, Skare JT., PLoS Pathog., 2019

https://pubmed.ncbi.nlm.nih.gov/30897158/

The Classical Complement Pathway Is Required to Control Borrelia burgdorferi Levels During Experimental Infection.

Zhi H, Xie J, Skare JT., Front Immunol., 2018

https://pubmed.ncbi.nlm.nih.gov/29867944/

Detection of Bioluminescent Borrelia burgdorferi from In Vitro Cultivation and During Murine Infection.

Hyde JA, Skare JT., Methods Mol Biol., 2018

https://pubmed.ncbi.nlm.nih.gov/29032549/

A high-throughput genetic screen identifies previously uncharacterized Borrelia burgdorferi genes important for resistance against reactive oxygen and nitrogen species.

Ramsey ME, Hyde JA, Medina-Perez DN, Lin T, Gao L, Lundt ME, Li X, Norris SJ, Skare JT, Hu LT., PLoS Pathog., 2017

https://pubmed.ncbi.nlm.nih.gov/28212410/

Biomechanics of Borrelia burgdorferi Vascular Interactions.

Ebady R, Niddam AF, Boczula AE, Kim YR, Gupta N, Tang TT, Odisho T, Zhi H, Simmons CA, Skare JT, Moriarty TJ., Cell Rep., 2016

https://pubmed.ncbi.nlm.nih.gov/27568563/

Borrelia burgdorferi BBK32 Inhibits the Classical Pathway by Blocking Activation of the C1 Complement Complex.

Garcia BL, Zhi H, Wager B, Höök M, Skare JT., PLoS Pathog., 2016

https://pubmed.ncbi.nlm.nih.gov/26808924/

BB0744 Affects Tissue Tropism and Spatial Distribution of Borrelia burgdorferi.

Wager B, Shaw DK, Groshong AM, Blevins JS, Skare JT., Infect Immun., 2015

https://pubmed.ncbi.nlm.nih.gov/26150534/

The BBA33 lipoprotein binds collagen and impacts Borrelia burgdorferi pathogenesis.

Zhi H, Weening EH, Barbu EM, Hyde JA, Höök M, Skare JT., Mol Microbiol., 2015

https://pubmed.ncbi.nlm.nih.gov/25560615/